A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models

نویسندگان

  • Rama Cont
  • Ekaterina Voltchkova
چکیده

We present a finite difference method for solving parabolic partial integro-differential equations with possibly singular kernels which arise in option pricing theory when the random evolution of the underlying asset is driven by a Lévy process or, more generally, a time-inhomogeneous jumpdiffusion process. We discuss localization to a finite domain and provide an estimate for the localization error under an integrability condition on the Lévy measure. We propose an explicit-implicit time-stepping scheme to solve the equation and study stability and convergence of the schemes proposed, using the notion of viscosity solution. Numerical tests are performed with smooth and non-smooth initial conditions. Our scheme can be used for European and barrier options, applies in the case of pure-jump models or degenerate diffusion coefficients, and extends to time-dependent coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Pricing of Futures Contracts by Considering Stochastic Exponential Jump Domain of Spot Price

Derivatives are alternative financial instruments which extend traders opportunities to achieve some financial goals. They are risk management instruments that are related to a data in the future, and also they react to uncertain prices. Study on pricing futures can provide useful tools to understand the stochastic behavior of prices to manage the risk of price volatility. Thus, this study eval...

متن کامل

Pricing and hedging of lookback options in hyper-exponential jump diffusion models

In this article we consider the problem of pricing lookback options in certain exponential Lévy market models. While in the classic Black-Scholes models the price of such options can be calculated in closed form, for more general asset price model one typically has to rely on (rather time-intense) MonteCarlo or P(I)DE methods. However, for Lévy processes with double exponentially distributed ju...

متن کامل

Option Pricing in Some Non-Lévy Jump Models

This paper considers pricing European options in a large class of one-dimensional Markovian jump processes known as subordinate diffusions, which are obtained by time changing a diffusion process with an independent Lévy or additive random clock. These jump processes are nonLévy in general, and they can be viewed as natural generalization of many popular Lévy processes used in finance. Subordin...

متن کامل

Generalised Lévy Processes and their Applications in Insurance and Finance

For insurance risks, jump processes such as homogeneous/non-homogeneous Poisson process and Cox process have been used . In financial modelling, it has been observed that diffusion models are not robust enough to capture the appearance of jumps in underlying asset prices and interest rates. As a result, generalised Lévy processes, which are simply speaking, the combinations of Poisson process a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2005